Hadamard Multipliers on Weighted Dirichlet Spaces
نویسندگان
چکیده
منابع مشابه
compactifications and function spaces on weighted semigruops
chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...
15 صفحه اولFourier Multipliers on Weighted L-spaces
In his 1986 paper in the Rev. Mat. Iberoamericana, A. Carbery proved that a singular integral operator is of weak type (p, p) on Lp(Rn) if its lacunary pieces satisfy a certain regularity condition. In this paper we prove that Carbery’s result is sharp in a certain sense. We also obtain a weighted analogue of Carbery’s result. Some applications of our results are also given.
متن کاملHadamard multipliers on spaces of real analytic functions
We consider multipliers on spaces of real analytic functions of one variable, i.e., maps for which monomials are eigenvectors. We characterize sequences of complex numbers which are sequences of eigenvalues for some multiplier. We characterize invertible multipliers, in particular, we find which Euler differential operators of infinite order have global analytic solutions on the real line. We p...
متن کاملOn Cyclicity in Weighted Dirichlet Spaces
We extend some results of Brown and Shields on cyclicity to weighted Dirichlet spaces 0<α< 1. We prove a comparison theorem for cyclicity in these spaces and provide a result on the geometry of the family of cyclic vectors in general functional Hilbert spaces.
متن کاملMultipliers on Weighted Besov Spaces of Analytic Functions
We characterize the space of multipliers between certain weighted Besov spaces of analytic functions. This extend and give a new proof of a result of Wojtaszczyk about multipliers between Bergman spaces. Introduction. P. Wojtaszczyk [W], using certain factorization theorems due to Maurey and Grothendieck, proved the following results: Let α > 0, 0 < p ≤ 2 ≤ q < ∞ and 1r = 1 p − 1q . (0.1) (Bq, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Integral Equations and Operator Theory
سال: 2019
ISSN: 0378-620X,1420-8989
DOI: 10.1007/s00020-019-2551-1